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Abstract—With the growth of the Internet of Things, we see
an increase in the importance of analysis of data from the edge,
often with the results needed in real-time. Indy Car series is one
of the well-known racing series in North America. All cars are
equipped with multiple cameras. The video streams captured by
these cameras can be used for detection and predictive tasks
to increase race safety and develop better strategies to win
the race. Moreover, the data can be used together with the
telemetry data to provide better analysis and predictions for the
drivers and the teams. In a lot of video analytics tasks, the tasks
begin with object detection as its foundation. The existing pre-
trained object detection models are inadequate to detect IndyCar
race cars. Therefore, we have created a new dataset and have
compared three different Single Shot Multibox Detector models
from TensorFlow Detection Model Zoo. We run experiments on
CPU and GPU. Since transferring the data from edge devices to
a server, running inference, and sending the result back is time
and resource consuming, we also test mobile detection models on
an Edge TPU, which is a Google Coral Dev Board. Our initial
results show that the Edge TPU gives the best inference time,
and it is more suitable for a real-time machine learning task.

Index Terms—Race car detection, IndyCar series, Real-time
object detection, Edge TPU

I. INTRODUCTION

The IndyCar Series, or the NTT IndyCar Series, is North
America’s top-level open-wheel racing [1]. Cars have twin-
turbocharged 2.2-liter direct-injected V6 engines, which run
at 12000 RPM. Engines are developed by Honda and Chevro-
let, and estimated horsepower varies between 500 and 700
depending on the turbo settings [5].

Anomalies are detected in [39] by using the telemetry data
collected by more than 150 sensors placed on each car. Other
than the telemetry data, each track, as well as each car, have
multiple cameras. The visual data collected from these cameras
can be used in detection and prediction to help drivers, teams,
and race organizers. For instance, anomalies can be detected,
accidents can be prevented by warning the drivers or the
detections can provide better analysis for the following races.
However, the prediction tasks require to detect the cars first, as
we can see in [19], [43]. On the other hand, the models trained
on well-known datasets do not perform well on the IndyCar
race cars, as can be seen in Fig. 1. Therefore, a specialized
labeled dataset is needed for IndyCar race cars.

Fig. 1: Indycar detection results with pre-trained SSD Resnet-50 FPN
on COCO dataset [2], [24]

The detection tasks for IndyCar can be highly time-sensitive
similar to self-driving cars. However, IndyCar race cars are
significantly faster and can go up to 240 miles per hour.
In a high-speed environment, detection and prediction times
become notably more crucial. To reduce the detection and
prediction time and to be able to meet the real-time constraints,
suitable models and infrastructure are required. The average
data arrival time from the car to a server is 80-90 ms for the
telemetry data [39]. Currently, we are unable to measure the
arrival time for video streaming; however, the arrival time will
be much slower in video streaming compared to the telemetry
data. We aim to meet the inference rate of 30 images per
second, which is equal to the frames per second (FPS) of the
video files used for the construction of the dataset.

The contributions of this paper include: 1) to create new
labeled image dataset to detect race cars accurately, 2) to
re-train three widely used Single Shot Multibox Detector
[25] models (which are SSD MobileNetV1 Quantized COCO,
SSD MobileNetV2 Quantized COCO, and SSD ResNet-50
FPN COCO) on the new dataset, and 3) to benchmark the
performance of the models on CPU, GPU, and Edge TPU
respectively. We further include interaction with the MLPerf
[6] community, where we will contribute our measured per-
formance results and a new dataset based on this work.
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Fig. 2: Single Shot Multibox Detector (SSD) architecture [25]

II. MOTIVATION AND BACKGROUND

Due to the development of self-driving car application
systems as well as IoT in the past years, there has been a lot of
attention being given towards offloading from Cloud to Edge.
According to [33], the previous task assignment works can be
split into two categories based on their objectives: (1) Energy-
aware or latency-aware task assignment [9], [13], [21], [26],
[28], [32], [38], and (2) Bandwidth-aware [8], [14], [27], [37],
[41]. There is a notable amount of computation that is involved
in the calculation of the task assignment schedule that makes
the energy-aware or latency aware task assignment approaches
that try to improve energy efficiency or reduce task latency
inappropriate for real-time machine learning applications with
energy efficiency requirements; however, none of the pre-
ceding approaches for bandwidth-aware task assignment take
into consideration the limited energy of the edge devices and
deadline-awareness of task [33].

In order to efficiently run machine learning models on edge
devices in terms of execution time and memory, researchers
have introduced techniques for optimization of the neural
networks in the machine learning models [16], [22], [42].
For the cloud servers, many job schedulers for ML jobs [15],
[20], [29], [40] have been proposed. Some are for CPU-based
clusters [29], [44] while others are for GPU-based clusters
[15], [40]. Our proposed work can evaluate CPU and GPU
servers, and Edge TPU based approaches to clarify the ML
real-time performance further.

[12] detects cones in Formula Student Driver-less com-
petition. They modify the Tiny YOLO for ASIC and FPGA,
then they compare GPU, ASIC, and FPGA. While GPU that is
placed in the car used in [12] consumes 75W, ASIC consumes
~1W and FPGA consumes ~12W. On the other hand, Google
Coral Dev Board consumes 4W while it is idle, and 8.5W
while operating at high-performance [11]. They obtain their
data from a camera fixed on the car, and they crop the image
during inference to remove the portion of the image majorly
containing the sky. However, this approach does not apply
to our work as the video stream contains data from multiple
different cameras both on and off the car, and we do not use
one fixed camera to collect the data.

[23] provides a self-driving car simulator to improve the
acceptance of self-driving cars. They detect the cars in front
of the car and calculate the distance, then they estimate the
danger based on the distance. They use YOLOv3 [30] to detect
the objects.

III. METHODOLOGY

Video/image object detection using streaming data is an
extension to traditional approaches of using neural networks
for object detection, which is well suited for identifying
objects in a high-speed racing environment. This work is to
answer the following research question:

How does the choice of neural network models for object
detection and hardware (servers and edge devices) impact
accuracy and latency?

A. Object Detection Models

Single Shot Multibox Detector (SSD) [25] generates a
certain number of bounding boxes and confidence scores
using a feed-forward CNN. It then applies non-maximum
suppression to reduce the number of boxes for the prediction.
The architecture of the SSD model uses VGG-16 [34] without
a fully connected network as its base network traditionally;
however, multiple variations of SSD exist. The feature layers
are added following the base network to decrease the size
of the input to the successive layer and give predictions at
different scales. Fig. 2 shows the architecture of the SSD.

Although SSD with a large architecture gives better detec-
tion results, it is not applicable to edge devices due to its large
memory footprint and computational complexity. Therefore,
networks with fewer layers and simpler operations are needed
for edge devices. We use three different SSD based networks
in which two of them are SSD mobile networks that are
compatible with Edge TPU, and one is an SSD Resnet-50
FPN to compare the SSD mobile networks with a full-sized
network.

1) MobileNetV1 [18]: Depthwise separable convolution is
used instead of a standard convolution in MobileNetV1. In a
depthwise separable convolution, different filters are used for
each channel. Then, a 1 x 1 point based convolution is applied
to merge the outputs of the separable convolution. When 3x3



Fig. 3: Depthwise separable convolution and 1 x 1 point based
convolution [18]

kernels are used, the total computation cost drops by 8 or 9
times compared to the standard convolution with an acceptable
reduction of the accuracy [18]. Fig. 3 shows the filter shapes
for standard, depthwise, and pointwise convolution.

2) MobileNetV2 [31]: It is an improved version of Mo-
bileNetV1 where the performance has been improved by in-
troduction of linear bottlenecks in between layers and shortcut
connections between respective bottlenecks. Further improve-
ments can be seen in [31]. These changes reduce the number
of parameters and increase the accuracy compared to the
MobileNetV1.

3) Resnet-50 [17]: Resnet-50 is a neural network model
that contains 50 layers with skip connections in its architec-
ture. We include this model to compare the object detection
accuracy with MobileNets.

Table I shows a total number of parameters and total
multiply-add counts (MACs) for the above mentioned neural
network models. These numbers do not include SSD feature
layers. We can see that Resnet-50 is quite large compared to
mobile nets.

TABLE I: TOTAL MULTIPLY ADD COUNTS (MACs) AND PA-
RAMETERS FOR A 224 x 224 INPUT IMAGE [3], [4], [35]

Network MACs (millions) Parameters (millions)

MobileNetV1 569 4.24

MobileNetV2 300 3.47

Resnet-50 3900 25.5

IV. DATA COLLECTION

Data preparation is an essential part of this work. The data
life cycle has four different stages, which are - data collection,
data cleaning, data storage, and the data processing stage. In
this paper, we use video streams from multiple Indianapolis
500 race events to extract and prepare the data required to
train the deep neural network models to detect the relevant
information needed. The video streams used in this paper to
prepare the data contain different camera angles. The video
streams contain multiple frames from different positions on
the track-side looking over the race cars, and they also contain
multiple frames from cameras positioned on each car that
gives the audience the driver’s view of the race at different
times. We extract the frames using OpenCV [7]. The extracted
images from the video stream are manually annotated using
rectangular bounding boxes around the race cars via LabelImg
[36] labeling tool, as can be seen in Fig. 4 to be used for
training and evaluating the object detection models for the
required tasks. We label 3096 images using the LabelImg
labeling tool, which are split into a training set that contains
2632 images with a total of 10637 labeled race cars and
test set, which contain 464 images with a total of 1821
labeled race-cars. The LabelImg tool can be used to produce
two different formats of annotations that are PASCAL-VOC
format and YOLO format. In both formats, there exists a
corresponding annotation file for each image file that contains
object class as well as bounding box information for all objects
in the image file.

V. EXPERIMENTAL SETUP

A. Hardware

We use a node that has 2x12-core Intel(R) Xeon(R) E5-
2670 v3 (Haswell) processors with 128 GB main memory;
and Nvidia Tesla K80 GPU with 12GB of memory. We also
use an Edge TPU device, which is a Google Coral Dev
Board with quad Cortex-A53, Cortex-M4F CPU, Integrated
GC7000 Lite Graphics, Google Edge TPU coprocessor as an
ML accelerator, and 1 GB LPDDR4 main memory. While the
server node runs Red Hat Enterprise Linux Server 7.7 (Maipo),
the Edge TPU device runs Mendel GNU/Linux 3 (Chef).

Fig. 4: Image labeling
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Fig. 6: Detection results after re-training on our dataset

B. Software

We use Cuda 10, Cudnn 7.6.2, TensorFlow 1.14.0 for the
GPU experiments, and TensorFlow MKL 1.14.0 which is
optimized for Intel CPU’s for the CPU experiments. The
Edge TPU only supports TensorFlow Lite; therefore, we use
TensorFlow Lite 1.14.0 for the Edge TPU experiments.

VI. VIDEO/IMAGE DETECTION RESULTS AND ANALYSIS

We use SSD MobileNetV1 Quantized, SSD MobileNetV2
Quantized, and SSD ResNet-50 FPN models from the Tensor-
Flow Detection Model Zoo [2] that are pre-trained with the
COCO dataset [24]. We choose the quantized versions of SSD
MobileNetV1 and V2 since the Edge TPU requires a quantized
model.

Training and test data are converted to TFRecord format
where the data is stored in binary record sequences since the
models from TensorFlow Model Detection Zoo require data
in TFRecord format. The default input size is 300x300 for
the mobile nets, it is 640x640 for the ResNet-50 FPN model.
The models are re-trained for 25000 steps with the mini-batch
size of 24 for the mobile nets, and 8 for the ResNet-50 FPN

because 24 images of size 640x640 do not fit into the GPU
memory. We run the inference on a video file by extracting
images in real-time and document the average time. In the
process, ten thousand images were extracted from the video
used for testing the models on CPU, GPU, and TPU.

Table II shows that mobile nets give similar COCO mAP
[10] values which are 29.84 for the SSD MobileNetV1 Quan-
tized and 29.48 for the SSD MobileNetV2 Quantized, while
SSD Resnet-50 FPN gives 46.4. Also, SSD Resnet-50 FPN is
much better at detecting medium and small objects due to the
input resolution and more layers. Detecting small objects can
be a challenging task. We can see in Fig. 6 that the model
with the Resnet-50 base network is more accurate than the
rest of the models. From the results (see Table II and Table
III), we can see that although the SSD Resnet-50 FPN model
is more accurate, it is two times slower than MobileNetV1,
three times slower than MobileNetV2 on GPU and the mobile
nets can be much faster on Edge TPU. Hence, we can say that
the SSD Resnet-50 FPN model is quite far from meeting the
real-time requirements.

On comparing, the inference times between CPU, GPU and
Edge TPU across all the three models, we can see that the



TABLE II: COCO MAP ON THE TEST SET

Model COCO mAP COCO mAP (Large) COCO mAP (Medium) COCO mAP (Small)

SSD MobileNetV1 Quantized 29.84 61.35 28.98 4.41

SSD MobileNetV2 Quantized 29.48 64.09 29.11 3.95

SSD ResNet-50 FPN 46.37 69.49 48.56 13.64

TABLE III: PERFORMANCE OF INFERENCE TIME (ms) AND FPS ON THE CPU, GPU AND THE EDGE TPU

Model Device capture (ms) pre-process (ms) inference (ms) post-process (ms) total (ms) FPS

SSD MobileNetV1
Quantized

CPU 5.17 0.61 52.63 21.12 79.53 12.57

GPU 2.61 0.2 39.49 23.77 66.07 15.13

Edge TPU 12.91 9.23 13.41 0.35 35.90 27.86

SSD MobileNetV2
Quantized

CPU 4.84 0.62 43.77 20.06 69.3 14.43

GPU 2.52 0.2 24.16 21.8 48.69 20.54

Edge TPU 13.03 9.45 8.54 0.33 31.34 31.91

ResNet-50 FPN CPU 4.9 0.61 232.5 15.74 253.76 3.94

GPU 2.85 0.2 125.3 16.14 144.5 6.92

SSD MobileNetV2 Quantized model on Edge TPU has the
best inference time and can process the most images in the
least time (approximately 32 images per second, see Table III
and Fig. 5). We can also see that frame capturing by [7], pre-
processing takes more time (since image resizing on an ARM
CPU requires more time) on the Edge TPU.

Total inference times can be improved further by paral-
lelizing frame capturing, pre-processing, inference, and post-
processing using threads and synchronized queues. We are
able to process 51 images per second on the Edge TPU with
the SSD MobileNetV2 Quantized model after parallelization.
However, the performance after parallelization is mainly con-
strained by the task of frame capturing, as the task of frame
capturing is the most time-consuming (as can be seen in Table
III).

VII. CONCLUSION

In this paper, we present a new dataset for detecting IndyCar
race cars, and we evaluate and compare real-time inference
of detection models on edge TPU and CPU, GPU servers
in terms of accuracy and inference time. The results also
show that more images need to be labeled to detect objects
more accurately. Currently, the best inference time for race
car detection is obtained by SSD MobileNetV2 on the Edge
TPU amongst the models used in our experiments and the
task of frame capturing from video-stream on an ARM CPU
is the bottleneck of real-time object detection while running
the model on Edge TPU. The experiments also bring to the
attention, the model constraints on Edge TPU as the Edge
TPU only supports TensorFlow Lite models. If a model has
operations that are not supported in TensorFlow Lite, the

model cannot be converted. This can be a limiting factor
as results with better accuracy could be produced with other
models that are currently not supported by Edge TPU.

VIII. FUTURE WORK

Our research is motivated and tested by real-world auto-
motive vehicle applications, and this paper describes a recent
work of our collaboration with the IndyCar company on an
important application to Indianapolis 500 format racing with
car and track sensors. The software testbed involves distributed
offline training and online inference for event detection over
time-series from sensors in our earlier publications and image
data analysis from video feeds here. Image detection models
can achieve significant results when trained with a sufficient
amount of data. For future work, we will label more images
to improve detection performance. However, data scarcity is
one limitation for special anomaly events such as car crash
where data augmentation will be explored using GAN-based
methods.
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